وبلاگ چت روم کامپیوتر و شبکه در سایت الفور
سامانههای خِبره یا سیستمهای خِبره (Expert systems) به دستهای خاص از نرمافزارهای رایانهای اطلاق میشود که در راستای کمک به کاردانان و متخصّصان انسانی و یا جایگزینی جزئی آنان در زمینههای محدود تخصّصی تلاش دارند. اینگونه سامانهها، در واقع، نمونههای ابتدایی و سادهتری از فنآوری پیشرفتهتر سامانههای مبتنی بر دانش به حساب میآیند.
این سامانهها معمولاً اطلاعات را به شکل واقعیات[1] و قواعد[2] در دادگانی به نام پایگاه دانش به شکل ساختار مند ذخیره نموده، و سپس با استفاده از روشهایی خاص استنتاج از این دادهها نتایج مورد نیاز حاصل میشود.
سامانههای تجربی موجبات انجام امور و یا تسهیل در انجام آنها را در زمینههای متنوّعی همچون پزشکی، حسابداری، کنترل فرایندها، منابع انسانی، خدمات مالی، و GIS فراهم میآورند. در هر یک از این زمینهها می توان کارهایی از نوع راهنمایی، تحلیل، دستهبندی، مشاوره، طراحی، تشخیص، کاوش، پیش بینی، ایجاد مفاهیم، شناسایی، توجیه، یادگیری، مدیریت، کنترل، برنامهریزی، زمان بندی و آزمایش را با مددجویی از سیستمهای تجربی با سرعت و سهولت بیشتری به انجام رسانید. †
سیستمهای تجربی یا به عنوان جایگزین فرد متخصص یا به عنوان کمک به وی استفاده میشوند.
نظام های خبره این امکان را در اختیار می گذارد تا بتوان دانش موجود در سطح جامعه را به صورت گسترده تر و کم هزینه تری اشاعه داد . این موضوع یعنی اشاعه دانش برای عموم مردم یکی از بنیادی ترین و اصلی ترین وظایف و رسالتهای حوزه کتابداری است .
مثلا از طریق واسطهای هوشمند جست و جوی اطلاعات می توان مهارتهای جستجوی پیشرفته را که اغلب خاص متخصصان با تجربه است در میان طیف وسیعی از کاربران در دسترس قرار دهد . سرعت استدلال یا حل مسائل در نظام های خبره می تواند منجر به ارائه خدمات موثرتر و سریع تر در برخی فعالیتهای کتابداری شود و انعطاف پذیری بیشتری را در پاسخگویی به نیازهای مخاطبان به وجود آورد.
کاربرد نظام های خبره و هوشمند را در حوزه های نمایه سازی، چکیده نویسی، طراحی و تولید اصطلاحنامه ها، فهرست نویسی، بازیابی متن فارغ از منطق بولی، بازیابی متون مبتنی بر منطق بولی، تجزیه و تحلیل خودکار محتوا و ارائه دانش، مدیریت و دسترسی به محتوی پایگاه های رابطه ای، اسناد هوشمند، تجزیه و تحلیل پایگاه های اطلاعاتی دانسته اند.
تا ابتدای دهه 1980 (م) کار چندانی در زمینه ساخت و ایجاد سامانههای خِبره توسط پژوهش گران هوش مصنوعی صورت نگرفته بود. از آن زمان به بعد، کارهای زیادی در این راستا و در دو حوزه? متفاوت ولی مرتبط سامانههای کوچک خبره و نیز سامانههای بزرگ خبره انجام شده است.
هوش مصنوعی: هوش مصنوعی روشی است در جهت هوشمند کردن کامپیوتر تا قادر باشد در هر لحظه تصمیم گیری کرده و اقدام به بررسی یک مسئله نماید. هوش مصنوعی، کامپیوتر را قادر به تفکر میکند و روش آموختن انسان را تقلید می نماید. بنابراین اقدام به جذب اطلاعات جدید جهت بکارگیری مراحل بعدی می پردازد.
مغز انسان به بخش هایی تقسیم شده است که هر بخش وظیفه خاص خود را جدا از بقیه انجام می دهد. اختلال در کار یک بخش تاثیری در دیگر قسمتهای مغز نخواهد گذاشت. در برنامههای هوش مصنوعی نیز این مسئله رعایت میشود درحالی که در برنامههای غیر هوش مصنوعی مثل C یا Pascal تغییر در برنامه روی سایر قسمتهای برنامه و اطلاعات تاثیر دارد.
مباحث کاربردی و مهم در تحقق یک سیستم هوش مصنوعی :
1-سیستمهای خبره (Expert Systems)
2-شبکههای عصبی (Neural Network)
3- الگوریتمهای ژنتیک (Genetic Algorithms)
4- سیستمهای منطق فازی (Fuzzy Logic Systems)
سیستمهای خبره برنامه هایی هستند که رفتار یک انسان متخصص در یک زمینه بخصوص را تقلید می کنند. این برنامه از اطلاعاتی که استفاده کننده در آنها ذخیره میکند جهت اعلام یک عقیده در یک موضوع بخصوص استفاده می کند. از اینرو سیستمهای خبره تا هنگامی که بتوانند موضوعی را که با پاسخهای شما مطابقت داشته باشد بیابند به سوال کردن از شما ادامه می دهند. به منظور درک کردن آنچه یک سیستم متخصص انجام می دهد مکالمه زیر که بین یک متخصص در امور میوه و فرد دیگری که می خواهد از وی توصیه ای در این مورد دریافت کند را در نظر بگیرید:
- متخصص: آیا میوه سبز است؟
- استفاده کننده: خیر.
- متخصص: آیا میوه قرمز است؟
- استفاده کننده: بله.
- متخصص: آیا این میوه روی درخت رشد می کند؟
- استفاده کننده: خیر.
- متخصص: آیا این میوه روی یک بوته رشد می کند؟
- استفاده کننده: بله.
- متخصص: آیا این بوته تیغ دارد؟
- استفاده کننده: بله.
- متخصص: این میوه تمشک است!
هدف از طراحی یک سیستم متخصص کامپیوتری در امر میوه تولید این مکالمه است. در حالت عمومی تر سیستم متخصص سعی میکند که به استفاده کننده از خود در مورد موضوعی که از آن مطلع است راهنمایی دهد.
مزایای یک سیستم خبره چیست؟
میزان مطلوب بودن یک سیستم خبره اصولا به میزان قابلیت دسترسی به آن و میزان سهولت کار با آن بستگی دارد.
می توان مزایایی که یک سیستم خبره در برابر انسان خبره دارد را به این صورت نام برد:
مثال هایی از سیستمهای متخصص تجاری:
در اوایل دهه 80 سیستمهای متخصص به بازار عرضه شد که می توانستند مشورتهای مالیاتی، توصیههای بیمه ای و یا قانونی را به استفاده کنندگان خود ارائه دهند.
سیستمهای متخصص چگونه کار می کنند؟
هر سیستم متخصص از دو بخش تشکیل میشود:
- بانک اطلاعاتی
- تولید کننده مکالمه
منظور از بانک اطلاعاتی در اینجا مکانیسم نگهداری اطلاعات و قوانین ویژه ای در مورد یک موضوع بخصوص می باشد. با این توصیف دو اصطلاح زیر تعریف میشود:
- شیء (): منظور از شیء در اینجا نتیجه ای است که با توجه به قوانین مربوط به آن تعریف می گردد.
- شاخص (Attribute): منظور از شاخص یا «صفت» یک کیفیت ویژه است که با توجه به قوانینی که برای آن در نظر گرفته شده است به شما در تعریف شیء یاری می دهد.
بنابراین می توان بانک اطلاعاتی را بصورت لیستی از اشیاء که در آن قوانین و شاخصهای مربوط به هر شیء نیز ذکر شده است در نظر گرفته شود.
در سادهترین حالت(که در اکثر کاربردها نیز همین حالت بکار می رود) قانونی که به یک شاخص اعمال میشود این مطلب را بیان میکند که آیا شیء مورد نظر شاخص دارد یا ندارد؟
یک سیستم متخصص که انواع مختلف میوه را شناسایی میکند احتمالاً دارای بانک اطلاعاتی به صورت زیر خواهد بود:
شیء قانون شاخص
سیب دارد روی درخت رشد می کند.
دارد گرد است
دارد رنگ قرمز یا زرد است
ندارد در کویر رشد می کند
انگور ----- -------------------
بانک ساده شده بالا، تنها با استفاده از قانون <<دارد>>:
شیء | شاخص هایی که دارد |
---|---|
سیب | رشد روی درخت |
سیب | گرد بودن |
سیب | رنگ قرمز یا زرد |
سیب | رشد نکردن در کویر |
تولید کننده مکالمهآن بخش از سیستم متخصص است که سعی میکند از اطلاعاتی که شما ذخیره کرده اید جهت یافتن یک شیء منطبق با خواسته شما استفاده نماید.
دو نوع عمده از تولید کنندههای مکالمه وجود دارد:
برخی قوانین قطعی هستند. به عنوان مثال یک شیمیدان می تواند با قطعیت و یقین اعلام کند که اگر اتم مورد نظر دارای 2 الکترون باشد آنگاه این اتم به عنصر هلیم تعلق دارد. اکثر قوانین قطعی نیستند بلکه با یک درصد مشخص، احتمال وقوع آنها می رود. با این وجود در بسیاری از اینگونه موارد عامل عدم قطعیت از نظر آماری اهمیت چندانی ندارد و از این رو شما می توانید با این قوانین بصورت قوانین جبری برخورد کنید.
در رابطه با این دو گروه عمده(یعنی قطعی و عدم قطعی) سه روش اساسی برای ساخت «تولید کننده مکالمه» وجود دارد:
تفاوت بین این سه روش به شیوه ای که «تولید کننده مکالمه» توسط آن سعی میکند به هدف خود برسد، بستگی دارد.