وبلاگ چت روم کامپیوتر و شبکه در سایت الفور
هوش ازدحامی (Swarm Intelligence) نوعی روش هوش مصنوعی است که مبتنی بر رفتارهای جمعی در سامانههای نامتمرکز و خودسامانده بنیان شده است. این سامانهها معمولاً از جمعیتی از کنشگران ساده تشکیل شده است که بطور محلی با یکدیگر و با محیط خود در تعامل هستند. با وجود اینکه معمولاً هیچ کنترل تمرکزیافتهای، چگونگی رفتار کنشگران را به آنها تحمیل نمیکند، تعاملات محلی آنها به پیدایش رفتاری عمومی میانجامد. مثالهایی از چنین سیستمهای را میتوان در طبیعت مشاهده کرد؛ گروههای مورچهها، دسته پرندگان، گلههای حیوانات، تجمعات باکتریها و دستههای ماهیها.
روباتیک ازدحامی، کاربردی از اصول هوش مصنوعی ازدحامی در تعداد زیادی از روباتهای ارزان قیمت است.
از موارد روشهای فرااکتشافی میتوان به موارد زیر اشاره کرد
دو روش اول موفقترین روشهای هوش مصنوعی ازدحامی که تاکنون اند.
بهینهسازی کلونی مورچه(Ant Colony Optimization)یکی از زیر مجموعههای هوش جمعی یا ازدحامی است که در آن از رفتار مورچههای واقعی برای یافتن کوناهترین مسیر بین لانه و منبع غذایی الگوبرداری شده است. هر مورچه برای یافتن غذا در اطراف لانه به صورت تصادفی حرکت و در طی مسیر با استفاده از ماده شیمیایی به نام فرومن، از خود ردی بر جای میگذارد.هر چه تعداد مورچههای عبور کرده از یک مسیر بیشتر باشد، میزان فرومن ذخیره شده روی آن مسیر نیز افزایش مییابد. سایر مورچهها نیز برای انتخاب مسیر حرکت، به میزان فرومن آن توجه و به احتمال زیاد مسیری را که دارای بیشترین فرومن است انتخاب میکنند. به این ترتیب حلقه بازخور مثبت ایجاد میگردد. مسیر هرچه کوتاهتر باشد، زمان رفت و برگشت کاهش و مورچه بیشتری در یک زمان مشخص از آن عبور میکند. در نتیجه ذخیره فرومن آن افزایش مییابد. لازم به ذکر است که انتخاب مسیر دارای بیشترین فرومن، قطعی نیست و احتمالی است. به همین دلیل امکان یافتن بهترین جواب وجود دارد. روش ACO، نوعی روش فرااکتشافی است که برای یافتن راهحلهای تقریبی برای مسائل بهینهسازی ترکیبیاتی مناسب است. روش ACO، مورچههای مصنوعی بهوسیله حرکت بر روی گرافِ مساله و با باقی گذاشتن نشانههایی بر روی گراف، همچون مورچههای واقعی که در مسیر حرکت خود نشانههای باقی میگذارند، باعث میشوند که مورچههای مصنوعی بعدی بتوانند راهحلهای بهتری را برای مساله فراهم نمایند.
روش PSO یک روش سراسری کمینهسازی است که با استفاده از آن میتوان با مسائلی که جواب آنها یک نقطه یا سطح در فضای n بعدی میباشد، برخورد نمود. در اینچنین فضایی، فرضیاتی مطرح میشود و یک سرعت ابتدایی به آنها اختصاص داده میشود، همچنین کانالهای ارتباطی بین ذرات درنظر گرفته میشود. سپس این ذرات در فضای پاسخ حرکت میکنند، و نتایج حاصله بر مبنای یک «ملاک شایستگی» پس از هر بازه زمانی محاسبه میشود. با گذشت زمان، ذرات به سمت ذراتی که دارای ملاک شایستگی بالاتری هستند و در گروه ارتباطی یکسانی قرار دارند، شتاب میگیرند. مزیت اصلی این روش بر استراتژیهای کمینهسازی دیگر این است که، تعداد فراوان ذرات ازدحام کننده، باعث انعطاف روش در برابر مشکل پاسخ کمینه? محلی میگردد.
همگونیهایی بین مسائل متفاوت در حوزه? فناوری اطلاعات و رفتارهای حشرات اجتماعی وجود دارد :
مراحل طراحی یک سامانه با کاربردهای فناوری اطلاعات بر مبنای هوش مصنوعی ازدحامی فرآیندی سه مرحلهای است :