سفارش تبلیغ
صبا ویژن
 
بیم از خدا، کلید هر حکمتی است . [پیامبر خدا صلی الله علیه و آله]
 
امروز: شنبه 100 اردیبهشت 25

پشتیبانی از روش های برنامه نویسی جستجویی.

مسائلی که AI به آن مرتبط می باشد همیشه پاسخگوی یک چنین نظریه های مهندسی نرم افزار استاندارد که شامل طراحی کامل و پردازش موفقیت آمیز و توسعه برنامه از خصوصیات و ویژگیهای دقیق است نمی تواند باشد. به دلیل طبیعت و ذات و نوع بخصوص AI  به ندرت این احتمال به وجود می آید که بتوان ویژگیهای درست و کاملی از شکل نهایی یک برنامه AI قبل از ساخت حداقل یک proto type بدست آورد. اغلب موارد شناخت مسئله برنامه مربوط می شود به حل موارد درگیر مسئله از طریق توسعه برنامه . دلایل آن عبارت است از :

1 – بیشتر مسائل AI اصولا مشخصه های ضعیفی دارند.

به دلیل اینکه پیچیدگی زیادی برای پشتیبانی از سطح اطلاعات لازم می باشد به ندرت احتمال مشاهده یک مسئله و تشخیص کامل بودن نظریه دقیق که باید در جایگاه خودش باشد وجود دارد.

بهترین ساختارهای سطح نشانه ای که در یک مسئله مورد استفاده قرار گیرند به ندرت در مشخصه های سطح دانش قرار می گیرند. این نوع پیچیدگی و نامفهومی خود را به روش های معمول مربوط به نرم افزارهای مهندسی مرتبط نمی دانند چون که در این نوع برنامه ها لازمه اش این است که مشخصه های مربوط به توسعه به خصوص مسئله قبل از اینکه مرحله کدبندی آغاز شود شکل می گیرد.

یک عملکرد منطقی خود ذاتا برای مشخصه ها و خصوصیات معمولش بسیار مشکل تر از عملکرد نوعی طبقه بندی لیست یا ایجاد یک فایل سیستم است . حقیقتا این به چه معنی است؟

به عنوان مثال برای طراحی یک مدار یا بهبود یک بیماری این به چه معنی است؟ چگونه یک انسان ماهر و متخصص این عملیات ها را شکل می دهد؟ سطح رضایت بخش ایجاد یک محدوده مسئله داده شده چه چیزی است؟ چه نوع دانش و اطلاعاتی لازم می باشد؟ چه مشکلاتی ممکن است به دلایل نبود و یا غیر واقعی بودن اطلاعات پیش بیاید؟ به دلیل جوابهای   به این قبیل سؤالات و دیگر سؤالات که در یک دوره کلی مطرح می شود و بسیار تخصصی می باشند و هر وقت این طور باشد ساختار آن نیز عمیق تر و پیچیده تر می شود به همین نسبت حل آن نیز به دقت بیشتری نیاز دارد.

2 – نظریاتی که برای حل مسائل به آن پراخته می شود در محدوده بخصوصی قرار می گیرند.

گر چه چهار چوب های کلی برای حل مسائل AI وجود دارد به عنوان مثال سیستم تولید جستجو در زبان دامنه و محدوده هر مسئله نیازمند روش های خاص خود می باشد.

بنابراین راه حل موفقیت آمیز مسئله به ندرت به طور کامل برای محدودیتهای جدید عمومیت و کاربرد دارد هر کاربرد تا حدودی یک نوع مسئله جدید می باشد .

3- ساختارها و اشکال بیان AIبه طور پیوسته باید توسعه و تجدید شود

توسعه AI یک پروسه تحقیقی مداوم است . توسعه سیستم های AI کاربردی در بسیاری از روشها بسط و توسعة این پروسه ها می باشند . گرچه تجربه عمدتاً به کاربرد زبان کمک می کند ولی عموماً هیچ جایگزینی برای کاربرد یک ایده و اینکه چگونه عمل می کند وجود ندارد .

به همین دلیل AI   اصولاً به صورت جستجوی است . برنامه اغلب به صورت ماشینی است که از طریق آن ما می توانیم دامن مسئله را کشف کنیم و روش های حل مسئله را کشف کنیم در حقیقت ابزاری است که با آن به شناخت مسئله نائل می شویم .

چالش در برنامه نویسی AI ، پشتیبانی برنامه ریزی کشفی است . در بین خصوصیاتی که یک زبان برنامه نویسی باید ایجاد کند موارد ذیل وجود دارد :
1-   Modularity
2-   قابلیت گسترش

3- ساختارهای سطح بالای مفید

4- پشتیبانی از Prototype سازی اولیه

 5- قابل خواندن بودن برنامه

6- مترجم ها

7- پشتیبانی نرم افزاری برای برنامه نویسی جستجویی

ما این عناوین را در پاراگراف های زیر مورد بحث و بررسی قرار خواهیم داد :

     

1-قابلیت Modularity کدها

حائز اهمیت است که یک زبان برای برنامه نویسی کشفی از یک سری تعاریف متوالی مربوط به کدها پیروی کند این بیانگر این است که مسائل می بایستی شامل قسمت های کوچک و مطلوب باشد نه بدنه های پیچیده که بندی شده ارتباط متقابل بین محتوی برنامه باید محدود باشد و به خوبی نیز توصیف شده باشند.

این شامل پرهیز از تأثیرات جانبی و متغیرهای جهانی (global) و اطمینان از رفتار هر Module واحد در شناخت برنامه باشد که بتواند به خوبی قابل تشخیص باشد.

برنامه های LISP به صورت مجموعة انتخابی از عملکردهای واحد می باشند در یک برنامه LISP که به صورت مطلوب نوشته شده باشد هر عملکرد کوچک می باشد که یک کارکرد خوب و واحد را شکل می دهند.

بنـــابراین اغلب  جایگزینی و اصلاح علت های هر کمبودی، ساده می باشد. روش های اندازه گیری متغیر LISP و پارامترهای مربوط به آن اغلب برای کاهش تأثیرات عملکردی به کار گرفته می شوند. متغیرهای جهانی،‌گر چه به وسیله زبان پشتیبانی می شوند ولی استفاده در کدهای متناسب LISP نهی شده اند.

علاوه بر این LISP دسته بندی شی گرا را از طریق سیستم شیء LISP به صورت CLOS پشتیبانی می شود.

در PROLOG واحد اصلی برنامه روش و قانون است، قوانین PROLOG همانند عملکردهای LISP کوچک و ویژه هستند.

به دلیل اینکه محدوده و قیاس متغیرها در PROLOG اغلب محدود به یک شیوه و قانون شده اند، و زبان اجازه تغییرات جهانی را نمی دهد. توصیف کردن اصولاً ساده می باشد.

LISP و PROLOG شامل مشخصه های سهل و آسانی می باشند که هنگامی که با یک ساختار برنامه مشخص ترکیب شوند، موجب آسان شدن پرداخت آن می گردند.

 

2-قابلیت گسترش

اصولاً برنامه نویسی جستجویی در قالب یک پروسه دارای ساختار سطح بالای برنامه ای است که به گونه کد توسعه یافته است. یک روش مهم برای انجام این پروسه در قالب سیستماتیک و با ساختار مناسب،‌توسعة یک زبان نهفته در ‌آن است.

اغلب امکان توصیف شکل نهایی یک برنامه AI وجود ندارد،‌اما امکان تشخیص ساختارهای سطح بالا و مفید برای کشف و بررسی دامنه مسئله وجود دارد. این ساختارها می توا ند شامل الگوهای مناسب ، کنترل کننده های جستجو وعملکردهای توصیف یک زبان توصیفی باشد.

اصـــولاً ایـــن نظـــریه که می گوید اگر شما ساختار نهایی یک برنامه را تشخیص ندهید می بایستی سعی کنید که ساختار زبان را توصیف کنید که به شما کمک خواهد کرد که آن ساختار را توسعه دهید.

برای پشتیبانی از این روش، یک زبان برنامه نویسی باید به صورت سهل و آسان قابل گسترش باشد و به طور ساده آنها را توسعه دهد. به وسیله توسعه و گسترش که همان توانایی توصیف ساختارهای زبانی جدید است که دارای حداکثر آزادی و انعطاف باشند.

LISP و PROLOG و همچنین توسعة شیء گرا آنها همانند CLOS همگی موجب می شوند که توصیف سادة اهداف، پیش بینی ها و عملکردهای جدید ، صورت پذیرد.

هنگامی که توصیف صورت پذیرفت، این ساختارهایی که کاربر ایجاد کرده دارای رفتاری شبیه به ساختارهای اساسی زبان می باشند.

این زبانها به  وسیله توسعة توانایی های اصولی از ابتدا تا حل آن برنامه ریزی می شوند. دراین صورت،‌گفته می شود که برنامه های معمول، ساختاربندی می شوند ولی برنامه های AI رشد و توسعه می یابند.

این مورد با تشخیص سریع مقایسه می شود که در این مورد زبانهای معمولی مابین خصوصیات ساختاری و برنامه های توسعه یافته، کاربردی واقع می شوند.

در یک برنامه  ما ممکن است عملکردهای جدیدی را تعریف کنیم اما ساختار آنها بسیار محدودتر از ســـاختارهای از قبل ساخته شده است. این موجب محدودیت انعطاف پذیری و استفاده از این توسعه و گسترش ها می شود.

LISP و PROLOG همچنین موجب ساده شدن نوشتن توصیف متغیرهای ویژه یک زبان خاص می شوند. در LISP برنامه ها و اطلاعات به گونه ساختاری لیست می شوند. این باعــث ســادگی نوشتن برنامه ای می شود که از کد LISP به عنوان داده (Data) استفاده می کنند که در این صورت باعث ساده تر شدن توسعه، تصویفی می شوند.

بسیاری از زبانهایی که از نظر سابقه و همچنین اقتصادی در نوع زبانهای AI حائز اهمیت می باشند، مثل PLANNER و ROSIE و KEE و OPS بر اساس توانائی های LISP ساخته می شوند.

PROLOG این توانائی ها را در قالب تعدادی “meta – predicates” که قابل پیش بینی برای ترکیب با دیگر مشخصه های PROLOG باشند. ایجاد می کند که در این صورت باعث ساده شدن نوشتاری آن می گردد.

همراه با LISP تعدادی زبانهای سطح بالا AI بر اساس PROLOG ساخته شده اند که از این روش استفاده می کنند.

 

3-وجود ساختارهای مفید سطح بالا

برنا مه نویسی جستجویی به کمک یک ساختار قوی سطح بالا در زبان به وجود می آید،‌این ساختارهای قوی و کلــــی به  برنامه نویس اجازه توسعه سریع ساختارهای ویژه برای بیان اطلاعات توصیفی و کنترل برنامه را می دهند.

در LISP اینها شامل اصول اساسی نوع اطلاعاتت می شود که موجب ایجاد ساختارهای پیچیده اطلاعاتی و عملکردهای قوی برای توصیف عملیات بر روی آ‌نها می شود. به دلیل اینکه LISP قابل گسترش می باشد و برای چندین دهه است که مورد استفاده قرار می گیرد. مهمترین و قوی ترین عملکردهای توصیفی LISP همان خصوصیات استاندارد زبانی آنها می باشد. ویژگیهای معمول LISP شامل جیدها عملکرد برای ایجاد ساختارهای اطلاعاتی، ساخت تداخلگرها و قابلیت Edit کردن ساختارهای LISP می شوند.

PROLOG به عنوان یک زبان مقایسه ای کوچک مطرح است که بخشی از آن به دلیل نو بودن و بخش دیـــــگر به دلیل عدم سادگی و کامل بودن آن است با این حال PROLOG به کاربرها اجازة ایجاد پیشگوئی های به خصوص را می دهد و مفیدترین اینها راه خود را برای استاندارد شدن باز کرده اند.

 

4-پشتیبانی برای ساخت Prototype اولیه

یکی از روش های برنامه نویسی جستجویی و مهم، Prototype سازی اولیه می باشد. در اینجا برنامه نویس یک راه حل سریع برای مسئله پیدا می کند و از آن برای جستجو فضای مسئله استفاده می کند. وقتی که مسئله مورد بررسی قرار گرفت و روش حل آن مشخص شد، Prototype کنار گذاشته می شود و یک برنامه نهایی که تأکید آن بر روی صحت و مؤثر بودن می باشد، ساخته می شود. گر چه مشکل است که چیزهایی را که زیاد مورد استفاده قرار می گیرند تا برای ساخت یک برنامه کامپیوتری به کار روند، کنار گذاشت، ولی انجام چنین کاری باعث صرفه جوئی در زمان و بهبود کیفیت نهائی کار می شود. ساخـــتارهای ایجاد شده به وسیله زبانهای AI عمدتاً باعث افزایش سرعت توسعة Prototypeها می شوند.

5-قابلیت خواندن برنامه و مستندسازی آن

به دلیل اینکه اغلب برنامه های AI به طور گسترده ای از طریق خودشان توصیف می شوند ولی این نکته حائز اهمیت است که کد بتواند قابل خواندن و قابل مستندسازی باشد. در عین حالیکه هیچ نوع جایگزینی برای محتوی زبانهای معمول در کد وجود ندارد، ولی با این حال زبـــان هـــای AI همـــراه بـا Moduleهای با ساختار سطح بالا باعث ساده شدن این عمل می شوند.

6-مفسرها

بیشتر زبانهای AI قبلاً ترجمه شده هستند نه اینکه در طول برنامه بخواهند ترجمه شوند. این بدان معنی است که برنامه نویس لازم نیست به مدت طولانی هر زمان که کد تغییر کرد برنامه را تعریف مجدد کند.

با توجه به مسائل عملکردی در ترجمه کد، زبانهای AI مدرن به Module های ویژه اجازه تعریف مجدد برای یک موقعیت متوسط را می دهند که از این طریق برنامه های سطح بالاتر بهتر تعریف می شوند. علاوه بر این بسیاری از کاربردها به برنا مه ها اجازه تکمیل شدن نهایی برنامه ها را می دهند.

7-محیطهای توسعه

زبانهای جدید AI در برگیرنده محیطهای برنامه ریزی می شوند که ابزارهای ایجاد کلی و یا بخشـــی از برنامه را فراهم می کنند.بسیاری از کاربردهای زبانی شامل ویرایش هوشمند می شــوند که اشتباهات را به عنوان یک کد نوشتاری در نظر می گیرد. به دلیل پیچیدگی برنامه های AI و مشکل بودن پیش بینی عملکرد هر سیستم تولید، اهمیت این پشتیبانی های سهل نمی تواند قابل تصور باشد.
Dynamic Binding and constraint propagation

زبانهای معمول نیاز به این دارند که بیشتر برنامه های مرتبط با آن در یک مدت زمان خاص تشخیص داده شوند.

شامل اتصال دادن متغیرها به محیط حافظه و انتقال روش های به نام هایشان می باشد. با این حال بسیاری از روش های برنامه نویسی پیشرفته مثل، برنامه نویسی های شیء گرا نیاز به این اتصال ها برای تشخیص دینامیکی دارند.

برنامه های Prolog و LISP پشتیبان قیدگذاری دینامیکی هستند. از یک نقطه نظر AI یکی از مهمترین منافع قیدگذاری دینامیکی پشتیبانی از برنامه نویسی ساختاری است. اغلب مسائل مربوط به یک برنامه AI نیـــاز به ایــــن دارد که ارزش های مشخصه های خاص ناشناخته باقی می ماند تا زمانی که اطلاعات لازم جمع آوری شوند.

این اطلاعات ممکن است به گونه یک سری از ساختارها بر اساس ارزش ها باشد که یک متــغیر از آن انتظار دارد. هم چنانکه ساختارها جمع شوند یک سری از احتمالات کاهش می یابد و در نهایت به یک راه حل منتهی می شود که تمامی ساختارها را تحت پوشش مطلوب قرار می دهد.

یک نمونه ساده از این نظریه ممکن است در یک سیستم تشخیص پزشکی دیده شود که اطلاعات دربارة نوع بیماری مریض جمع آوری می شود تا زمانی که اطلاعات مربوطه محدود به نوع خاصی از بیمار شوند زبان برنامه نویسی مقایسه ای این روش از نوع متغیر قیدگذاری اولیه یا توانایی حصول یک متغیر نامرکب می باشد در حالیکه آن را در کد برنامه جمع می کند.

LISP و PROLOG به متغیرها اجازة ترجمه وافزایش غیرمرکب را می  دهند، در حالیکه توصـــیف ارتبـــاطات و وابستگی های بین این متغیرها و دیگر واحدهای برنامه را انجام می دهد. این موجب کاربرد آسان و طبیعی نوع قید می شود.

 
6.   تعاریف مشخص و واضح

لازم است که زبانهای AI همراه با زبانهای دیگر برنامه نویسی برای توسعه گسترده کامل و در عین حال منطقی سیستم، به کار گرفته شوند.

متأسفانه زبانهای برنامه نویسی معمول مثل Fortran و پاسکال دارای تعاریف مشکل و پیچیده ای هستند این موارد می تواند ناشی از واقعیت خود زبان باشد که اصولاً دارای خصوصیات ساختاری سطح بالایی در کامپیوتر دارند و در خودشان سیستم های فیزیکی و پیچیده ای دارند. به دلیل اینکه زبانهای AI دارای اساس و پایه ریاضی هستند مثل PROLOG و LISP ،‌آنها می بایستی معانی ساده تری باشند که دارای قدرت و ظرافت نهفته در ریاضی باشند.

این موجب می شود که این زبانها عمدتاً برای تحقیقات در محدودة به کارگیری دانش ابزارهای زبان، ایجاد برن امه درست،‌و اتوماتیک کردن تأثیر گذاری کد، مفید واقع شوند.

همـــچنین بـــاید توجه داشت که گر چه عملکرد بسیاری از برنامه های AI کاملاً پیچیده می باشد ولی کدی که دارای این عملکرد است باید ساده و مشخص باشد.

بلوک های بزرگ مرکب و پیچیده با کد مشخص دارای AI مناسب نمی باشند یک زبان خوب توصیف شده،‌یک ابزار مهم برای دریافت این اهداف می باشد.

خلاصه ای دربارة LISP و PROLOG

به وسیله برآورده کردن نیازهای گفته شده، LISP و PROLOG هر دو دارای زبانهای برنامه نویسی غنی و کاملی هستند وقتی که این زبانها را فرا می گیریم، دانشجو در ذهن و فکر دربارة روشهایی که آنها به وسیله ویژگیهای خاص هر زبان پشتیبانی می کنند، نیازها را نگه داری می کنند.
PROLOG

PROLOG یکی از بهترین نمونه و مثال یک زبان برنامه نویسی منطقی است. یک برنامه منطقی دارای یک سری ویژگیهای قانون و منطق است . PROLOG از محاسبة اولیه استفاده می کند. در حقیقت خود این نام از برنامه نویسی PRO در LOGIC می آید یک مفسر برنامه را بر اساس یک منطق می نویسد. ایده استفاده توصیفی محاسبه اولیه برای بیان خصوصیات حل مسئله یکی از محوریت های مشارکتPROLOG می باشد که برای علم کامپیوتر به طور کلی و به طور اخص برای زبان برنامه نویسی هوشمند مورد استفاده قرار می گیرند. نفع اسفتاده از محاسبه اولیه برای برنامه نویسی شامل یک ساختار ظریف و ساده و قابل معنی می شود.

به دلیل همین خصوصیات است که PROLOG به عنوان یک محرک اصلی و مفید برای تحقیقاتی مثل موارد برنامه نویسی آزمایشی به عنوان یک کد، متغیر کردن برنامه و طراحی ویـــژگیهـای زبان سطح بالا، مطرح است. PROLOG و دیگر زبانهای منطقی یک سبک برنامه نویسی مشخصی را دنبال می کنند که در آنها برنامه ها به صورت دستورات پشت سرهم و متوالی برای ایجاد یک الگوریتم، نوشته می شوند. این نوع برنامه اصولاً به کامپیوتر می گوید که «چه چیزی درست است» و «چه چیزی باید صورت گیرد» و این به برنامه نویس اجازه می دهد که بر روی حل مسئله به صورت یک سری خصوصیات از یک محدوده تأکید کند تا اینکه بخواهد به جزئیات نوشتاری سطح پائین ساختارهای الگوریتمی برای بعد بپردازد.

اولین برنامه PROLOG در مارسی فرانسه در اوایل 1970 به عنوان بخشی از زبان معمول یک پروژه نوشته شد. تئوری نهفته در پشت این زبان در کارهای کوالسکی،‌هیز و دیگران آورده شده است. عمدة  توسعة PROLOG بین سالهای 1975 تا 1979 در بخش هوش مصنوعی دانشگاه ادینبورگ صورت گرفت.

در آنجا یک گروه مسئولیت کاربرد اولین PROLOG را به عهده داشتند که آقای David H.D مسئول آن بود. این گروه اولین  PROLOG را ساخت که می توانست محاسبات کلی را انجام دهد. این محصول بر اساس سیستم DEC-10 ساخته شده بود و می توانست در مدهای توصیفی و مقایسه ای کارآئی داشته باشد.

مزیت این زبان به وسیله پروژه هایی که برای ارزیابی و گسترش قدرت بیان برنامه های منطقی نوشته شده اند،‌ اثبات شده است.

بحث دربارة یک چنین کاربردهایی می تواند در سمینار و گردهمائی های مربوط به زبان برنامه نویسی هوش مصنوعی در سطح بین المللی مطرح شود.
LISP

LISP اولین بار به وسیله JACK MCCARTHY در اواخر دهه 1950 مطرح شد این زبان به عنوان یک مدل پیوسته محاسباتی بر اساس تئوری عملکرد مجدد،‌معرفی شد.

در مقالات اولیة مک کارتی (1960) اهداف خود را مشخص می کند: ایجاد یک زبان سمبولیک تا یک زبان محاسباتی. ایجاد زبانی که بتوان از آ‌ن به عنوان یک مدل محاسباتی بر اساس تئوری عملکرد مجدد استفاده کرد و از آن بتوان برای تعریف دقیق یک ساختار و تعریف زبانی استفاده کرد.

گر چه LISP یکی از قدیمی ترین زبانهای محاسباتی است که هنوز فعال است، ولی دقت کافی در برنامه نویسی و طراحی توسعه باعث شده که این یک زبان برنامه نویسی فعال باقی بما ند.

در حقیقت این مدل برنامه نویسی طوری مؤثر بوده است، که تعدادی از دیگر زبانها بر اساس عملکرد برنامه نویسی آن واقع شده اند مثل FP ، ML و SCHEME .

این لیست اساس برنامه ها و ساختارهای اطلاعاتی در LISP است، LISP خلاصه شده نام پروسه LIS است. این برنامه یک سری لیست های عملکردی درون ساختاری دارد.

LISP به برنامه نویس قدرت کامل برای اتصال به ساختارهای اطلاعاتی را می دهد.

اصولاً LISP یک زبان کامل است که دارای عملکردها ولیست های لازمه برای توصیف عملکردهای جدید، تشخیص تناسب و ارزیابی معانی می باشد.

تنها هدف کنترل برنامه بازگشت و شرایط منحصر به فرد است. عملکردهای کامل تر هنگامی که لا زم باشد در قالب این اصول تعریف می شوند. در طی زمان بهترین عملکردها به عنوان بخشی از زبان می شوند. پروسه توسعة زبان به وسیلة اضافه کردن عملکردهای جدید موجب توسعه محورهای زیادی از LISP می شوند که اغلب شامل صدها عملکرد بخصوص برای ایجاد اطلاعات کنترل برنامه، خروجی و ورودی، Edit کردن عملکردهای LISP می شوند.

این ارتباطات محرکه ای هستند که به وسیله LISP از یک مدل ساده و ظریف به یک مدل قوی و غنی و عملکردی برای ساخت سیستم های نرم افزاری بزرگ، تبدیل می شود.

یکی ازمهم ترین برنامه های مرتبط با LISP برنامه SCHEME می باشد که یک تفکر دوباره دربارة زبان در آن وجود دارد که به وسیله توسعه AI وبرای آموزش اصول مفاهیم علم کامپیوتر مورد استفاده قرار می گیرند.

 
7.   برنامه نویسی شیء گرا

برخلاف برنامه LISP و PROLOG ،‌برنامه شیء گرا ریشه در مهندسی نرم افزار دارد. اولین بار در سال 1970 توسعه یافته که به وسیله  Alan Kay این تحقیقات صورت گرفته است.

ساخت ایده ها از محرک، که زبان نروژی تظاهر می کند در سال 1960  و مقاله Symour در استفاده از LOGO برای آموزش کودکان، صورت پذیرفته است.

استفاده از Dyna book برای اولین بار به عنوان یک کامپیوتر، که افرادی به غیر متخصصان علم کامپیوتر با آن سروکار داشتند.

بـــه دلیل اینکه کاربر افراد معمولی بودند سیستم عملکرد و کاربرد نرم افزار نباید تکنیکی می بود و به سادگی قابل تشخیص بود. راه حل آنها برای این مسئله یک مداخلة گرافیکی است با استفاده از منوها و آیکون های گرافیکی و اشاره گرها، یک موس یا یک سری برنامه ها برای ادیت کردن، داده ها می باشد.

دخالت کاربر در طراحی یک notebook متأثر از طراحی کاربرها برای یک سری کامپیوترهای تخصصی مثل سیستم های به کارگیری کامپیوتر شخصی مثل مکینتاش، ماکروسافت و محل های مربوط به ویندوز می باشد.

در یک برنامه small talk ،‌همه چیز در قالب هدف و یک ساختار قابل محاسبه مرک و قراردادی مطرح می شود. اهداف نه فقط شامل انواع اطلاعات برای محاسبه بلکه شامل انواع روشهای لازم برای محاسبه حالت و وضعیت هدف نیز می شوند.

ارزشهای یک هدف به صورت کلاس ها بیان می شود. اهداف ممکن است اهداف طبقه بندی شده که توصیف کنندة تمامی مواد یک نمونه باشد و بیانگر نوع ذات و توصیف تما می موارد یا مواردی که بیانگر یک عضو واحد هستند را شامل شود.

وقتی مواردی از یک نوع اطلاعات به وسیله اهداف توصیف می شود این موارد ذاتاً دارای نوع توصیف و روشهای توصیفی از عملگرهایشان می باشند،‌برای شکل دادن یک عملیات بر روی یک هدف، یک پیام به سمت هدف فرستاده شده که حاصل روش مناسبی می باشد. به عنوان مثال، اضافه کردن 3 و 4 پیام 4+ به سمت شیء 3 فرستاده می شود و 3 پاسخ می دهد می شود 7  .

به وسیله ایجاد انواع ترکیب اطلاعات و عمل بر روی آنها در یک عمل واحد مربوط به هدف، small talk از کد Modular (پیمانه ای) توسعه و نوع کاربرد برای عناصر اطلاعات و کد مربوط به تکثیر آنها، پشتیبانی می کند.

به دلیل اینکه اهداف  small talk در قالب یک کلاس شبکه ای همراه با اهداف کاملاً ویژه که بخشی از تمامی روش هــای کاملاً کلی است ، بسیار ساده است که یک ساختار جدید برنامه ای توصیف کنیم که عملاً با اهداف موجود در برنامه همراه باشد. بنابراین یک برنامه اصولاً می تواند قدرت کامل یک سیستم باشد که شامل گرافیک،‌بازنگری و ارتباط است.

علاوه بر این روش های توسعه نرم افزاری مثل ارائه اطلاعات و زبانهای نهفته، فشار بر اپراتور و استفاده از کدها از طریق یک گروه اصلی و زبانهای نهفته در قالب یک مدل رایج پشتیبانی می شوند.

زبانهای شیء‌گرا همراه با بسیاری از خصوصیات مندرج در یک کلاس اطلاعاتی، شامل کلاس اصلی و توانایی پاسخ در ساختار اطلاعات می شود به همین دلایل زبانهای شیءگرا در برنامه نویسی AI استفاده می شوند.
محیطهای هیبرید

نیاز به برنامه نویسی اطلاعاتی موجب توسعة تعدادی برنامه نویسی و تکنیک های زبان، شامل سیستم های تولید،‌قوانین و کلاس شیء‌گرا می شود.

یک سیستم هیبرید بیانگر نمونه های چند منظوره در قالب یک محیط برنامه نویسی خاص مــی باشد. گر چه محیطهای هیبرید متفاوت می باشد. ولی عموماً شامل خصوصیات ذیل می شوند.

 1-نمایش شیء گرا از محدوده اشیاء

یک چنین سیستم هایی ذاتاً ویژگیهای کلاس را پشتیبانی می کنند و اغلب شامل یک مکانیسم انتقال پیام برای عکس العمل هدف می باشند.

2-قوانین نمایش اطلاعات neuristic

گر چه چهارچوب اهداف به معنی توصیف طبقه بندی اهداف، می باشند. قوانین به عنوان عمدة نظر توصیف مسائل اطلاعاتی می باشند.

ساختار then …. if ….. مناسب شیوة تخصص انسانی است که بیانگر پروسة تصمیم گیر است. قوانین دریافت اطلاعاتی از اهداف را دارند که با استفاده از یک زبان که مستقیماً در چارچوب یک هدف می خواند و می نویسد و یا به وسیلة استفاده از پیام که مستقیماً وارد هدف می شود صورت می پذیرد.

3-پشتیبانی از انواع روش های جستجو

بیشتر سیستم های پشتیبانی از جستجوی اولیه و انتهایی حمایت می کنند عموماً بیان یک هدف در قالب جستجویی ،‌تغییر به سمت عقب می باشد . علاوه بر این یک واقعیت تازه دربارة حافظه کارکرد ممکن است ایجاد علت های اولیه از قوانین کند که به وسیله این واقعیت جدید پشتیبانی می شوند.

4-توصیف دامنة کاربرد عملکرد متقابل و تأثیرات جانبی

یک demon فـــرآیندی اســـت که به وسیله عملکردهای جانبی بعضی از اعمال مشخص می شود. یک نمونه از استفاده demon کنترل در یک سیستم زمانی است که بیانگر دوره ای در مانیتور یک چاپگر و یا دیگر وسایل می باشد.

demon به وسیله یک زمان مشخص می شود. محیطهای AI این ایده را توسعه می دهند و باعث ایجاد demon می شوند که هنگامی که هدف تولید یا توصیف شود به کار می آیند.

چنین demonهایی برای به زمان نگه داشتن یک نشانگر در پاسخ به تغییر مقدار مورد استفاده قرار می گیرند. Demon های مهم و مطرح اصولاً دارای مقادیری متغیر می باشد که هنگامی که ارزش متغیر تغییر کند demon خوانده شده و وقتی که این اتفاق افتاد demon ایجاد و خلق می شود که این وقتی اتفاق می افتد که یک مقدار خلق شده باشد و ارزش ها در قالب گرافیکی فعال می شوند که این فعالیت می تواند متغیر باشد.

5-تداخلگرهای گرافیکی

اینها شامل یک طیفی از امکاناتی می باشند که اجازه تداوم و دنبال کردن موارد را می دهند. به عنوان مثال نشانگرهای گرافیکی می توانند ساختار قوانین یک اصل اطلاعاتی را به صورت یک درخت توصیف دهند. یکی از مهمترین خصوصیات محیطهای هیبرید،‌توانائی اتصال با استفاده از demon می باشد که به صورت یک نشانگر گرافیکی متصل به شیء و هدف می باشد. که این موجب عملکرد گرافیکی برای بیان زمان واقعی نشانگر می باشد که در حقیقت بیشتر محیط ها دارای یک پشتیبانی سطح بالای از داده های گرافیکی می باشند.

6-اجتناب از زبانهای زیرین

روشهایی که در قالب یک زمان خاص یا پاسخگو می باشند به وسیله محیط و یا اغلب اوقات LISP و PROLOG یا حتی  و یا پاسکال توصیف شده اند که این موجب توصیف طیفی فرآیند اطلاات و هم چنین یک برنامه اطلاعاتی که طیف وسیعی از زبانهای که شکل دهنده هندسی، جهت ها و سنسورها و یا دیگر عملکردهایی که به صورت بهتری در قالب روشهای الگوریتمی به کار گرفته می شود را شامل می شود.

7-توانائی ترجمه اطلاعات جهت اجرای سریعتر یا تحویل روی یک ماشین کوچکتر

وقتی که برنامه شیء گرا کامل شد. یک محیط کامل و توسعه یافته اغلب ، بلندی است که به تدریج افول می کند و پائین می آید بیشتر محیط های مدرن AI اجازه کاربرد سریعتر و ساده تر را که اغلب کوچکتر و ارزانتر است را در یک ماشین ترجمه ایجاد می کنند.
8.   یک نمونه هیبرید

بسیاری از نمونه های مطلوب اصولاً از طریق اشیا، ارتباطات و کنش و واکنش متقابل بین آنها واقع یم شود در شکل زیر یک نمونه اتصال به وسیله باطری همراه با یک سوئیچ برای یک لامپ (شکل 364) در نظر گرفته شده است.

لامپ، باطری و سوئیچ ممکن است هر کدام به وسیله کلاسها بیان شوند که بیانگر ویژگیهای باطری، سوئیچ و لامپ باشد . مشخصه های الکترونیکی شکل 2 ممکن است به عنـــوان موارد بخصوصی از این کلاس های کلی بیان می شوند. توجه داشته باشید که نمونه ها دارای مقادیر نمونه ای مربوط به کلاس خاص شیء مربوط به خود می شوند به عنوان مثال اگر سوئیچ 1 در حالت خاموش قرار گیرد. قسمت کنترل که مربوط می شود به لامپ 1 تحت تأثیر قرار خواهد گرفت که این موارد در شکل زیر نشان داده شده اند.

یک قانون ممکن است در اینجا به وجود بیاید که :

اگر نور وارد AND نشود، سوئیچ AND را بسته و باطری درست است بنابراین باید به قسمتی که ممکن است آسیب دیده باشد مراجعه کرد.

در نمایش هیبرید قوانین دارای ویژگیهایی هستند که بیشتر بیانگر مقدار اهمیت کلاسها و اشیاء می باشند.که در شکل 3 به آن اشاره شده است. این قانون ممکن است به عنوان بخشی از قانون اولیه سیستم در تلاش برای به جریان انداختن این مدار باشد که در جای دیگر برای راه اندازی سوئیچ کنترل برای حالات متغیر است.
9.   انتخاب زبان کاربردی

همانگونه که هوش مصنوعی به مرحله رشد می رسد وقابلیت های خود را در طیف وسیعی از مسائل کاربردی به اثبات می رساند اعتماد به LISP و PROLOG نیز مدنظر می باشد، ‌موارد مربوط به توسعة نرم افزاری، همانند نیاز به تداخلگرها به صورت ساده وآ‌سان همراه با یک کد منطقی تا استفاده از AI در Moduleهای کوچکتر و یا بزرگتر در برنامه ها و نیاز به ایجاد توسعه استاندارد متأثر از مشتریان دولتی و یا گروهی موجب توسعة سیستم های AI در انواع زبانهای مثل C ،  , C++ Java و Smalltalk شده است.

کــه زبــانهای LISP و PROLOG کار خود را در محدودة توسعه و Prototype سازی سیستم های  AI در صنعت و دانشگاهها دنبال می کنند.

یـــک اطـــلاعات و دانش کاربردی مربوط به این زبانها به عنوان بخشی از مهارت هر برنامه نویس AI می باشد. علاوه بر این، این زبانها به عنوان زمینه ای برای بسیاری از این خصوصیات می باشند که در ادامه همکاری با زبانهای برنامه نویسی جدید می باشند.

احتمالاً بهترین نمونه از این زبانها Java میباشد که متناسب با استفاده اولویت دینامیکی اش، دارای مدیریت حافظه اتوماتیک و دیگر خصوصیاتی است که در زبانهای که ترجمه شده وجود دارد به نظر می رسد که دیگر زبانهای برنامه نویسی برای رسیدن به حد مطلوب از استانداردهای این زبانها استفاده می کنند.

هم چنانکه این تکامل صورت می پذیرد و ادامه می یابد دانش مربوط به LISP و PROLOG یا Small talk و روش های برنامه نویس قادرند تنها از نظر مقدار توسعه یابند.

بنابراین، از اینکه از یکی از این زبانهای AI استفاده کنیم یا خود را در برنامه نویسی با زبانهای C++ و C و Java یا یکی از زبانهای رقیب پیدا کنیم راضی و قانع خواهیم بود.

منابع و مآخذ


کتاب Artificial intelligence structures & strategies for complex problem solving
نوشته George  F.Luger & william A. Stubble field
چاپ Wesley long man Inc, 2000


 نوشته شده توسط لادن در پنج شنبه 90/3/26 و ساعت 1:40 عصر | نظرات دیگران()
درباره خودم

وبلاگ  چت روم  کامپیوتر و شبکه در سایت الفور
مدیر وبلاگ : علی[32]
نویسندگان وبلاگ :
لادن[38]
حیران[0]

وبلاک چت روم شبکه و کامپیوتر در سایت الفور تاریخ تاسیس 19/1/1390

آمار وبلاگ
بازدید امروز: 4
بازدید دیروز: 22
مجموع بازدیدها: 80814
جستجو در صفحه

لوگوی دوستان
خبر نامه
 
وضیعت من در یاهو